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Abstract— We present our perspective and goals on high-
performance computing for nanoscience in accordance with the
global trend toward “peta-scale computing.” After reviewing
our results obtained through the grid-enabled version of the
fragment molecular orbital method (FMO) on a grid testbed
of the Japanese Grid Project, National Research Grid Initiative
(NAREGI), we show that FMO is one of the best candidates for
peta-scale applications by predicting its effective performance
in peta-scale computers. Finally, we introduce our new project
constructing a peta-scale application in an open-architecture
implementation of FMO in order to realize both goals of high-
performance in peta-scale computers and extendibility to multi-
physics simulations.

I. I NTRODUCTION

On account of the recent developments of the grid com-
puting environment, we can use many computer resources
more than a thousand CPUs. However, those large distributed
resources are accessible only when we pass through some
gateway to the grid system after a tedious procedure for grid-
enabling of application programs. Thus, it is important to make
their applications grid-aware in advance when a scientist in
nanoscience wants to use the grid system as a daily tool.

On the other hand, the development on high performance
computing (HPC) environments shows no sign of slowing
down, and, within several years, we might reach the scale of
peta (∼ 1015) in computer resources for scientific computing.
It is expected that the “peta-scale computer” exhibits more
than a peta flops performance in floating-point calculations,
its available memory is more than a peta byte in total, or it
has external storages amount to more than a peta byte. Thus,
the global trend in HPC is now to study how to realize the
peta-scale computing [1].

The purpose of this paper is twofold: one is to present
our computational results in nanoscience supported by the
Japanese Grid project, National Research Grid Initiative
(NAREGI) [2], and the other is to show a perspective about
the HPC applications for peta-scale computing. This paper is
coordinated as follows. Those computational results using the
fragment molecular orbital method (FMO) on grid computing
environments are shown in section II. The performance pre-
diction of the FMO calculation in a peta-scale computer is

Fig. 1. In FMO, the target molecule is divided into fragments for which
ab initio calculation is performed. Usually, carbon–carbon single bonds are
chosen as a boundary between fragments.

shown in section III, and the introduction of the actual im-
plementation of FMO in order to realize peta-scale computing
is given in section IV. Finally in section V, we discuss what
is necessary in the actual peta-scale computing for scientific
applications.

II. GRID-ENABLED FMO

In this section, we review the results on a grid-enabled
version of FMO, and evaluate its effectivity in the grid testbed
of NAREGI [3]. Our main contribution to the project is to
develop large-scale grid-enabled applications in nanoscience.
One of these applications is the Grid-FMO which is based
on the famousab initio molecular orbital (MO) package
program, GAMESS [6], and is constructed by dividing the
package into several independent modules so that they are
executed on a grid environment. The algorithm of FMO and
the implementation of Grid-FMO is briefly reviewed in the
following subsections.

A. Algorithm of FMO

The FMO method developed by Dr. Kitaura and co-workers
[4] can execute all electron calculations in large molecules



Fig. 2. Flow of calculation of the grid-enabled FMO

with more than 10 thousands atoms. A brief overview of the
flow of the FMO up to dimer correction is the following:
(1) a molecule to be calculated is divided into fragments, (2)
ab initio MO calculations [5] are executed for each fragment
(monomer) under an electro-static potential made by all the
other fragments, and this calculation is repeated until the
potential is self-consistently converged, (3)ab initio MO
calculations are executed for each pair of fragments (dimer),
and (4) a total energy is obtained by summing up all the
results. This algorithm is implemented in several famous MO
packages such as GAMESS [6], ABINIT-MP [7], etc.

Although the most time-consuming part of this calculation
is ab initio MO calculations for each fragment and each pair
of fragments, all these calculations are independent each other.
Thus, the FMO is easily executed in parallel computers with
high efficiency. The FMO routines included in those famous
packages are already parallelized for cluster machines, and
are coordinated so that they exhibit efficient results in their
performance. However, if the program is used in a distributed
computing environment, we should consider robustness and
controllability in addition to the efficiency. Thus, a grid-
enabling procedure is necessary. Among many ways to the
grid-enabling, we choose a strategy to reconfigure the program
into a loosely-coupled form in order to satisfy such properties.

B. Loosely-coupled FMO

We have developed a grid-enabled version of FMO, called
a Loosely-coupled (LC) FMO program [8], as part of the
NAREGI project. At first, we show the procedure to change the
GAMESS-FMO program into a “loosely-coupled form,” where
the original FMO in the GAMESS package is divided into
several “single task” modules which are connected each other
through input/output file transfers. Those modules consists of
run.ini for the initialization, run.mon for the fragment

Fig. 3. Flow of LC-FMO represented in NAREGI Workflow Tool

calculation (monomer),run.dim for the fragment pair calcu-
lation (dimer), andrun.tot for the total energy calculation,
and are invoked from a script program which also manages
the file transfers over distributed computers. The total flow of
the LC-FMO is shown in fig. 2.

Another benefit of the loosely-coupled form is the ex-
tendibility of its functionality. In fact, after the first release
of the LC-FMO, we have developed two other modules
which realize a linkage to the initial density database and
a visualization feature of the total molecular orbitals. Since
the top-level program to invoke modules is lightweight and
can be written in script languages, further modification of the
total flow is easily performed.

C. Execution on NAREGI Grid

In order to execute LC-FMO on the NAREGI grid, we put
the flow of the program into NAREGI Workflow Tool [3]. The
graphical representation of the LC-FMO program is shown in
fig. 3, where modules and input/output files are represented
in icons connected each other. This procedure is simple and
straightforward because we have already reconstructed the
program into a suitable form for distributed computing. Thus,
the important is whether the basic structure of the program is
grid-aware or not.

Once a program is grid-enabled, we can execute it by
the use of the large-scale computing resources over one
thousand CPUs. From the programmer’s points of view, the
most preferable thing is that we are relieved of arranging
the resources to execute the program in high efficiency. In
NAREGI testbed system [3], NAREGI Super Scheduler can
manage the resource rearrangement with the help of NAREGI
Information Service.

D. Efficiency of LC-FMO

Robustness and efficiency are conflicting each other in
general. Since our reconstruction of FMO to increase the
controllability might hurt the efficient execution of the pro-
gram, it is necessary to evaluate the efficiency of LC-FMO by
comparing with the original FMO program in GAMESS.

In table I, we show elapsed times for chicken egg white
cystatin (1CEW, 1701 atoms, 106 fragments, shown in fig. 4)
by the LC-FMO and the original GAMESS-FMO codes. This
is obtained on the part of the NAREGI testbed which consists
of 16 CPUs of Xeon 3GHz. Generally speaking, an increase of



TABLE I

THE ELAPSED TIME FOR CHICKEN EGG WHITE CYSTATIN.

LC-FMO GAMESS-FMO

Initial Guess 37s 4s
Monomer 1h11m 59m
Dimer 2h16m 2h11m
Energy 4s < 1s

Total 3h28m 3h10m

Fig. 4. The molecular structure of chicken egg white cystatin (1CEW, 1701
atoms, 106 fragments).

the total elapsed time is inevitable when we reconstruct some
application into a loosely-coupled form, which is considered
as a cost for grid-enabling. As shown in table I, however, the
increase of the time is relatively small. Thus, it is evaluated
that the LC-FMO is effectively executed on grids.

III. PERFORMANCEPREDICTION

In this section, we predict what performance would be
expected if we executed our FMO program in a “peta-scale
computer.” Since the actual hardware is not available at
present, the prediction is based on a hypothetical specifications
of the computer.

A. Hypothetical Specification of the Peta-scale Computer

It is said that, in a few years, such computer systems
with peta-scale specifications will be designed [9]. Here, we
concentrate on CPU resources of the peta-scale computer, and
estimate how many CPU resources are necessary to attain peta-
scale performances.

The current peak performance of a single-core CPU is
the order of 10 giga flops. If a parallel computer with 10
peta-flops peak performance is configured by the CPU core
to achieve 1 peta-flop effective performance, 1,000,000 CPU
cores are necessary in total. Since a cluster system constructed
by 1,000,000 machines connected each other is unimaginable,
it is necessary to rearrange those resources into multiple layers
while we do not concern here how to realize computational
nodes with such many multiple CPU cores. If we can configure
a lowest layer by a node with the performance of 100∼ 1,000

TABLE II

TIMING DATA OBTAINED IN A SINGLE NODE OF IBM P5 1.9GHZ.

Input 1cew 1ao6half 1ao6 1ao6dim

No. Atom 1701 9121 18242 36484
Nf 106 561 1122 2244
Nd(Nf ) 690 4192 8416 16832
Nes(Nf ) 4875 152888 620465 2499814
Im 17 17 17 17

monomer 1356 13364 40005 140810
(Average) (0.752) (1.40) (2.10) (3.69)

Time SCF-dimer 2037 20689 70465 186901
(sec) (Average) (2.95) (4.94) (8.37) (11.1)

ES-dimer 398 13772 55955 208627
(Average) (0.0816) (0.0901) (0.0902) (0.0835)

Elapsed Time (sec) 3799 47886 166601 536898

TABLE III

TIMING DATA OBTAINED IN 16 CPUS OFXEON 3GHZ.

Input 1cew 1ao6half 1ao6

No. Atoms 1701 9121 18242
Nf 106 561 1122
Nd(Nf ) 690 4192 8416
Nes(Nf ) 4875 152888 620465
Im 17 17 17

monomer 1030.4 10808.9 33989.2
(Average) (9.72) (19.3) (30.3)

Time SCF-dimer 1677.4 17517.6 50819.2
(sec) (Average) (41.3) (71.0) (102.7)

ES-dimer 293.1 9594.8 39133.4
(Average) (1.02) (1.07) (1.07)

Elapsed Time (sec) 3003.5 38065.9 126330.9

CPUs, the total computer will be a parallel system composed
of 1,000∼ 10,000 nodes.

B. Performance Prediction of FMO

The procedure to predict the performance of FMO in the
peta-scale computer is a somewhat phenomenological method
based on actual measurements of elapsed times in current
computer systems. First, we assume an execution model of
FMO which gives theoretical timing functions of the number
of fragmentsNf . After fixing some parameters by several
measurements of the program, we predict the elapsed time
on the virtual computer with peta-scale specifications.

1) Execution Model of GAMESS-FMO:Even if you could
analyze all the program codes of GAMESS, it is almost
impossible to determine the number of floating-point cal-
culations in a FMO routine precisely since there are many
conditional branches which depend on the molecular structure
given as an input. Our strategy, here, is a practical approach to
obtain phenomenological values of the execution time through
experimental executions of the FMO.

The total execution time of the FMO is divided into three
parts: a monomer part, an SCF-dimer part, and an ES-dimer
part. The monomer and SCF-dimer parts perform SCF calcu-
lations for each fragment and each pair of fragments, respec-
tively, while the ES-dimer part obtains dimer correction terms
under an electro-static (ES) approximation between fragments.
Usually, the ES approximation is applied to the fragment
pair with fragments which are separated more than a certain



TABLE IV

PARAMETER VALUES TO REPRESENT THE EXECUTION MODEL OFFMO

Parameter Value

f
(0)
m f

(1)
m 0.59 0.0014

f
(0)
d

f
(1)
d

2.83 0.0039

f
(0)
es — 0.082 —

Eibm Exeon 1.0 0.071

threshold. We start from an expression of the total amount of
computation as a function of the number of fragmentsNf ,

Ftotal(Nf ) = Fm(Nf ) + Fd(Nf ) + Fes(Nf ), (1)

whereFm(Nf ), Fd(Nf ), andFes(Nf ) represent the number
of floating-point calculations for monomer, SCF-dimer, and
ES-dimer parts, respectively. These are assumed as

Fm(Nf ) =
[
f (0)

m + f (1)
m Nf

]
NfIm (2)

Fd(Nf ) =
[
f

(0)
d + f

(1)
d Nf

]
Nd(Nf ) (3)

Fes(Nf ) = f (0)
es Nes(Nf ), (4)

according to the algorithm of the FMO theory [4], where
Im is the number of monomer loops,Nd(Nf ) and Nes(Nf )
represent the numbers of SCF-dimers and ES-dimers. SCF
calculations for monomers and dimers in the FMO depend on
the environmental potential which is made by all the fragments
other than the target monomer and dimer, while it can be
ignored for ES-dimers. Thus, we represent the amount of each
SCF calculation for a monomer and an SCF-dimer up to a
linear term ofNf , and that of a non-SCF calculation for an
ES-dimer as a constant. The parameters,f

(0)
m , f

(1)
m , f

(0)
d , f

(1)
d ,

f
(0)
es , should be determined from the actual timing data. If we

define additional parameters, the number of parallel nodesK
and the effective floating-point performanceE (flops) of each
node, we can compare the actual timing data with the amount
of computation divided byKE.

Table II and III show the timing data of each part in test
executions of several inputs on two machines, 1 node of IBM
p5 1.9GHz and a 16 CPU cluster of intel Xeon 3GHz. Since
averaged sizes of fragments in these inputs are considered as
almost the same, the difference of the elapsed time mainly
depends on the number of the total fragmentsNf . The least-
square fitting with the additional parameters representing the
effective performances of each computer,Eibm and Exeon,
determines all the parameter values shown in table IV after
the normalizationEibm = 1. In figures 5 (a), (b) and (c), we
plot the timing data and the results of the functions, (a)(f (0)

m +
f

(1)
m Nf )/KE, (b) (f (0)

d + f
(1)
d Nf )/KE, and (c)f (0)

es /KE.
2) Performance in Peta-scale Computer:In order to predict

the total performance of FMO, it is convenient ifNd(Nf ) and
Nes(Nf ) are represented in simple functions ofNf . By the
least-square fitting of the data in table II and III, we obtain
the function for the number of SCF-dimers

Nd(Nf ) = 7.50 Nf . (5)
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Fig. 5. The fragment number dependency of the amount of computation
for (a) a monomer, (b) an SCF-dimer, and (c) an ES-dimer are plotted with
the effective performance ratios (E = 1 for IBM p5, E = 0.071 for Xeon).
Lines are functions (a)(f (0)
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m Nf )/KE, (b) (f
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and (c)f (0)
es /KE obtained by the least-square method.
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Fig. 6. The number of SCF-dimers in the test executions and the function
Nd(Nf ) by the least-square method.
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Fig. 7. Predicted elapsed time of the FMO calculation by GAMESS
as a function of the number of fragmentsNf . This is obtained on
the assumption that 10,000 nodes are available, and each node is 5
times faster than a current machine.

If we consider the constraint

Nd(Nf ) + Nes(Nf ) =
(Nf − 1)Nf

2
, (6)

the number of ES-dimers is represented in the form

Nes(Nf ) =
(Nf − 1)Nf

2
− 7.50 Nf . (7)

If we substitute these functions and parameters into Eqs. (2),
(3), and (4), the total computational amount is obtained as a
function of Nf . As already seen in the previous section, the
FMO algorithm is appropriate for parallel executions when
the number of fragments is large enough compared to the
number of available nodes. Suppose that we have a peta-scale
computer withK = 10000 and E = 5, i.e., the number
of available nodes is 10,000 and each node has an effective
speed 5 times faster than a node of IBM p5 1.9GHz which is
used in this paper as a reference machine (Eibm = 1). Then,
the predicted elapsed timeFtotal(Nf )/KE is calculated as a
quadratic function ofNf shown in fig. 7. From the viewpoint
of the elapsed time, we can perform quantum calculations for
molecules with more than 100,000 fragments if the peta-scale
computer is realized.

According to the effective performance measurements on
PCs, the FMO calculation is executed in 0.5∼ 1.0 giga flops
per one CPU of Xeon or Pentium4, which means that our
reference machine, a node of IBM p5 1.9GHz, exhibits almost
10 giga flops for the program since it isEibm/Exeon ≈ 14
times faster than a Xeon. Then, the total performance of the
FMO calculations in a peta computer withK = 10000 and
E = 5 is predicted as 0.5 peta flops. Thus, the FMO is
considered as a predominant candidate which can record peta-
scale performance.

IV. OPENFMO PROJECT

In spite of the fact that the FMO is a suitable algorithm
to achieve the peta-scale performance through large-scale
parallel executions, the actual GAMESS-FMO code cannot
be executed for molecules with more than 100,000 fragments.

Fig. 8. Multi-physics/multi-scale simulator stack including OpenFMO.

Fig. 9. Can multi-physics/multi-scale simulations reveal the true aspect of
the complex world of matter?

One of the reason why the current program fails to run is in
memory consumption of each node, where the current FMO
code in GAMESS tries to allocate two-dimensional arrays with
respect to a pair of fragments, e.g., the distance between two
fragments. This exceeds 40 giga bytes even if we consider the
symmetry. The limit of the number of fragments is considered
as the order of 10,000 in the current implementation. Thus,
the reconstruction of the FMO code is necessary in order to
correspond to the peta-scale computing.

In this section, we introduce our new project to reconstruct
a FMO program from scratch. The name of this project,
OpenFMO [10], stands for the following openness: (1) names
and argument lists of APIs constructing the FMO program
are opened publicly, (2) the module-based program structure
itself is opened for other theories of physics and chemistry,
i.e., multi-scale/multi-physics simulations, and (3) the skeleton
program is developed under some open-source licenses and
its development process will also be opened to the public. In
fig. 8, we show a stack structure of this program. Although
the main target is still a quantum chemical calculation of
molecules, it can be combined with other theories to construct
multi-physics/multi-scale simulations (fig. 9) for complex phe-
nomena [11].



A. Open Architecture Implementation of FMO

As already shown in section II-A, the fragment MO method
consists of the standardab initio MO calculations including
generation of Fock matrices with one/two-electron integral
calculations. Using this property, the usual FMO program is
divided into two layers, the skeleton program which control the
whole flow of the FMO algorithm, and the molecular orbital
(MO) APIs to provide the charge distribution of each fragment
throughab initio MO calculations. Since the specification of
interfaces between the skeleton and the APIs is fixed and
opened publicly, either of them can easily be substituted by
other programs.

B. Open Interface to Multi-physics Simulations

The multi-physics simulation is one of the predominant
strategy to construct peta-performance applications for nano-
scale materials. Our new implementation of FMO can also be
opened for such multi-physics simulations. Since the FMO
method is based on electro-static interaction between frag-
ments, we can extend each fragment to the general objects
which can provide a static charge distribution. For examples,
we often use molecular mechanics representations of atomic
clusters which should be given by quantum mechanical de-
scription, or the environmental charge distribution surrounding
a molecule can be included as a fragment to simulate solute-
solvent systems. Thus, the MO-APIs for a certain fragment
can be substituted into other programs based on the different
approximation levels.

In addition to the description in molecular sciences, this
is extended to larger-scale simulations through the “multi-
physics/multi-scale simulator” layer. This type of extension
is widely used for the large-scale computation representing
realistic models of molecules in cells or other living organisms.

C. Open Source Development of the Programs

The source code of the skeleton program is publicly opened
under some open-source licenses. At present, the OpenFMO
project is managed by several core members including the
authors of this paper. Once we show the effectiveness of our
approach to the open-implementation, and the direction of
the project is settled properly, we are willing to change the
management of the project into so-called open-source-software
developments.

V. SUMMARY AND DISCUSSION

In this paper, we showed our results in nanoscience executed
on the NAREGI grid system, and expressed our perspective
toward the peta-scale computing. In section III, we showed
that FMO is one of the peta-scale applications. However, it
has been also realized that the actual implementations of the
FMO method, at present, do not correspond to the execution on
peta-scale environments, i.e., they do not solve molecules with
more than 10 thousand fragments even if peta-scale computers
are available. In order to improve the situation, we started an
open-source project for multi-physics simulations with new
FMO codes from scratch.

Generally speaking, it is difficult that we make a scientific
application exhibit the peta-scale performance since a simple
parallel scheme fails in case that the total number of CPUs
is the order of 1,000,000. Thus, it will be necessary that
the application itself has a multilayer structure in order to
use the resources efficiently corresponding to the hardware
architecture of peta-scale computers. The FMO calculation
which we have studied in this paper has a two-stage structure
in its original algorithm:ab initio calculations are performed
for each fragment and fragment pair while the interactions
between these fragments are described by classical electro-
static potentials. This theoretical reconfiguration of the original
ab initio MO method into the layered form is considered as
the key to the successful performance of the program.

Scientific calculations with layered structures have been
carried out as multi-physics/multi-scale simulations in various
fields. This type of calculations is important not only as a
technique of realistic simulations but also as an actual example
for the peta-scale computing in the future. However, we claim
that the deep understanding of the physical/chemical theories
is necessary for a proper construction of the effective simu-
lations which describe complex aspects of nature. Then, the
theoretical and practical way of constructing such simulations
should be established before the time when the peta-scale
computers will be installed. We expect that our implementation
of the simulator is one of the solutions for high-performance
scientific simulations in the next-generation.
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